1,630 research outputs found

    The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures

    Get PDF
    The protein databank now contains the structures of over 11,000 ligands bound to proteins. These structures are invaluable in applied areas such as structure-based drug design, but are also the substrate for understanding the energetics of intermolecular interactions with proteins. Despite their obvious importance, the careful analysis of ligands bound to protein structures lags behind the analysis of the protein structures themselves. We present an analysis of the geometry of ligands bound to proteins and highlight the role of small molecule crystal structures in enabling molecular modellers to critically evaluate a ligand model’s quality and investigate protein-induced strain

    Conferences in the time of COVID: notes on organizing and delivering the first Brain Conference

    Get PDF
    To further fulfil their missions of promoting teaching, education and research in neurology and related clinical-academic disciplines, the Guarantors of Brain and the Brain journal family invited delegates to the first Brain Conference in Spring of this year. This event aimed to deliver excellent teaching and scientific presentations across a broad spectrum of neuroscience fields, with the key aim of making the content as accessible as possible. We hoped to capitalize on the benefits of an online format, whilst trying to capture a little of the joy of the in-person meeting. This article reports on the approach and practical choices made to achieve these goals, and we hope this will provide some guidance and advice to others organizing their own online conference

    Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions

    Full text link
    Safe and practical solar-driven hydrogen generators must be capable of efficient and stable operation under diurnal cycling with full separation of gaseous H2 and O2 products. In this study, a novel architecture that fulfills all of these requirements is presented. The approach is inherently scalable and provides versatility for operation under diverse electrolyte and lighting conditions. The concept is validated using a 1 cm2 triple-junction photovoltaic cell with its illuminated photocathode protected by a composite coating comprising an organic encapsulant with an embedded catalytic support. The device is compatible with operation under conditions ranging from 1 m H2SO4 to 1 m KOH, enabling flexibility in selection of semiconductor, electrolyte, membrane, and catalyst. Stable operation at a solar-to-hydrogen conversion efficiency of >10% is demonstrated under continuous operation, as well as under diurnal light cycling for at least 4 d, with simulated sunlight. Operational characteristics are validated by extended time outdoor testing. A membrane ensures products are separated, with nonexplosive gas streams generated for both alkaline and acidic systems. Analysis of operational characteristics under different lighting conditions is enabled by comparison of a device model to experimental data

    White matter abnormalities in active elite adult rugby players

    Get PDF
    The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation

    Detection of Glial Fibrillary Acidic Protein in Patient Plasma Using On-Chip Graphene Field-Effect Biosensors, in Comparison with ELISA and Single-Molecule Array

    Get PDF
    Glial fibrillary acidic protein (GFAP) is a discriminative blood biomarker for many neurological diseases, such as traumatic brain injury. Detection of GFAP in buffer solutions using biosensors has been demonstrated, but accurate quantification of GFAP in patient samples has not been reported, yet in urgent need. Herein, we demonstrate a robust on-chip graphene field-effect transistor (GFET) biosensing method for sensitive and ultrafast detection of GFAP in patient plasma. Patients with moderate-severe traumatic brain injuries, defined by the Mayo classification, are recruited to provide plasma samples. The binding of target GFAP with the specific antibodies that are conjugated on a monolayer GFET device triggers the shift of its Dirac point, and this signal change is correlated with the GFAP concentration in the patient plasma. The limit of detection (LOD) values of 20 fg/mL (400 aM) in buffer solution and 231 fg/mL (4 fM) in patient plasma have been achieved using this approach. In parallel, for the first time, we compare our results to the state-of-the-art single-molecule array (Simoa) technology and the classic enzyme-linked immunosorbent assay (ELISA) for reference. The GFET biosensor shows competitive LOD to Simoa (1.18 pg/mL) and faster sample-to-result time (<15 min), and also it is cheaper and more user-friendly. In comparison to ELISA, GFET offers advantages of total detection time, detection sensitivity, and simplicity. This GFET biosensing platform holds high promise for the point-of-care diagnosis and monitoring of traumatic brain injury in GP surgeries and patient homes

    Investigating the characteristics and correlates of systemic inflammation after traumatic brain injury: the TBI-BraINFLAMM study

    Get PDF
    INTRODUCTION: A significant environmental risk factor for neurodegenerative disease is traumatic brain injury (TBI). However, it is not clear how TBI results in ongoing chronic neurodegeneration. Animal studies show that systemic inflammation is signalled to the brain. This can result in sustained and aggressive microglial activation, which in turn is associated with widespread neurodegeneration. We aim to evaluate systemic inflammation as a mediator of ongoing neurodegeneration after TBI. METHODS AND ANALYSIS: TBI-braINFLAMM will combine data already collected from two large prospective TBI studies. The CREACTIVE study, a broad consortium which enrolled >8000 patients with TBI to have CT scans and blood samples in the hyperacute period, has data available from 854 patients. The BIO-AX-TBI study recruited 311 patients to have acute CT scans, longitudinal blood samples and longitudinal MRI brain scans. The BIO-AX-TBI study also has data from 102 healthy and 24 non-TBI trauma controls, comprising blood samples (both control groups) and MRI scans (healthy controls only). All blood samples from BIO-AX-TBI and CREACTIVE have already been tested for neuronal injury markers (GFAP, tau and NfL), and CREACTIVE blood samples have been tested for inflammatory cytokines. We will additionally test inflammatory cytokine levels from the already collected longitudinal blood samples in the BIO-AX-TBI study, as well as matched microdialysate and blood samples taken during the acute period from a subgroup of patients with TBI (n=18).We will use this unique dataset to characterise post-TBI systemic inflammation, and its relationships with injury severity and ongoing neurodegeneration. ETHICS AND DISSEMINATION: Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (17/LO/2066). Results will be submitted for publication in peer-review journals, presented at conferences and inform the design of larger observational and experimental medicine studies assessing the role and management of post-TBI systemic inflammation

    Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.

    Get PDF
    The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures

    Adverse childhood experiences and sources of childhood resilience: A retrospective study of their combined relationships with child health and educational attendance

    Get PDF
    Background: Adverse childhood experiences (ACEs) including maltreatment and exposure to household stressors can impact the health of children. Community factors that provide support, friendship and opportunities for development may build children's resilience and protect them against some harmful impacts of ACEs. We examine if a history of ACEs is associated with poor childhood health and school attendance and the extent to which such outcomes are counteracted by community resilience assets. Methods: A national (Wales) cross-sectional retrospective survey (n = 2452) using a stratified random probability sampling methodology and including a boost sample (n = 471) of Welsh speakers. Data collection used face-to-face interviews at participants' places of residence. Outcome measures were self-reported poor childhood health, specific conditions (asthma, allergies, headaches, digestive disorders) and school absenteeism. Results: Prevalence of each common childhood condition, poor childhood health and school absenteeism increased with number of ACEs reported. Childhood community resilience assets (being treated fairly, supportive childhood friends, being given opportunities to use your abilities, access to a trusted adult and having someone to look up to) were independently linked to better outcomes. In those with ≥4 ACEs the presence of all significant resilience assets (vs none) reduced adjusted prevalence of poor childhood health from 59.8 to 21.3%. Conclusions: Better prevention of ACEs through the combined actions of public services may reduce levels of common childhood conditions, improve school attendance and help alleviate pressures on public services. Whilst the eradication of ACEs remains unlikely, actions to strengthen community resilience assets may partially offset their immediate harms

    A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    Get PDF
    In Monte Carlo particle transport codes, it is often important to adjust reaction cross sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analogous Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross section change. This makes it possible to increase the cross section of nuclear reactions by factors exceeding 10^4 (in appropriate cases), without distorting the results of energy deposition calculations or coincidence rates. The procedure is also valid for bias factors less than unity, which is useful, for example, in problems that involve computation of particle penetration deep into a target, such as occurs in atmospheric showers or in shielding
    corecore